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Figure 2
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Figure 3
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1
EVALUATION OF A FAST AND ROBUST
WORM DETECTION ALGORITHM

FIELD OF THE INVENTION

The invention pertains to identification of Internet worm
propagation.

BACKGROUND OF THE INVENTION

Malicious computer worms (or Internet worms) are a dan-
ger to any computer that is accessible via a computer network,
such as the Internet. A computer worm is a self-replicating
program, similar to a computer virus. However, unlike a
virus, which attaches itselfto and infects an executable file on
a computer, a worm is self-contained and does not need to be
part of another program to propagate itself.

Worms are often designed to exploit the file transmission
capabilities of many computers. A worm uses a network to
send copies of itself to other systems and it does so without
any necessary human intervention, such as forwarding by
email, which is a common method of spreading a virus. Scan-
based worms use a form of scanning (transmission of packets)
from an infected host to a potential new host as a propagation
technique. Based on the potential host’s response to this scan
(i.e., does the potential host respond positively, or does the
response indicate that the potential host will not accept addi-
tional packets from the infected host), the infected host deter-
mines whether to spread the worm to the potential host. It is
also possible that a worm can be carried in a single packet. In
this situation, the infected host transmits the packet to another
address without the need for a response from the potential
new host.

Typical approaches to preventing a worm outbreak involve
worm detection, dissection and signature development. Sig-
nature development occurs once the worm has been identi-
fied, and a common pattern is found which can be used to
identify the worm. This signature must then be propagated
throughout the network, either to a firewall running security
software or to each individually connected computer running
a certain security program. Once the security program
receives the signature, the database of signatures the security
program recognizes as malicious is updated, and the com-
puter running the security program is protected against the
identified worm. But this approach does not address the case
of previously unidentified worms for which no signature has
been identified.

Previously unidentified, fast spreading worms are a reality,
as amply demonstrated by worms such as the Stammer worm.
The release and propagation of the Slammer worm in 2003
was a revolutionary event in the study of computer worm
propagation. It not only demonstrated in an unprecedented
way the scale and disruption that is possible in the real world
with a relatively compact worm, it also showed the ineffec-
tiveness of current techniques in detecting and countering
these new fast spreading worms. More specifically, in the
early phase of Slammer propagation, it doubled in size every
8.5 seconds. It reached a maximum scan rate of 55 million
addresses per second and was able to infect more than 90
percent of vulnerable hosts within 10 minutes. In the end,
even though Slammer carried no malicious payload and its
main damage was in network resource (bandwidth and CPU)
consumption, it served as a wake-up call to network admin-
istrators and the computer security industry.

With these kinds of fast spreading worms, the traditional
approach of signature-based detection is no longer sufficient.
Worms can infect all vulnerable hosts well before a signature
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can be identified. Several approaches have been proposed
utilizing non-signature based detection means. One such
approach detects a worm by monitoring the correlation
between the incoming and outgoing packets at a network
connection. More specifically, this approach studies the cor-
relation of the payloads and packet headers of the incoming
and outgoing packets. However, this correlation is not always
reliable. Specifically, the technique was most effective
against earlier worms that used a fixed destination port, or a
portion of the network address specifying the port where the
packet is received on the network connection, which made
correlation studies easier as a single destination port could be
monitored across the network. However, recent worm attacks
randomize the destination port on the network connection.
This renders monitoring of destination port incoming and
outgoing packets and studying the correlation between the
two packet types less reliable for worm detection.

Another non-signature based approach involves detecting
a worm by identifying the exponential growth trend of scan-
ning rates on a particular network connection. However, this
process requires studying the growth trend over a given inter-
val of time. Different worms have different propagation
times. For example, a worm may inhabit a host computer for
anhour before propagating to anew host. If the wrong interval
of time is chosen to study the growth trend, then relevant
information relating to the growth trend is missed and a worm
cannot be effectively detected.

What is needed is a fast method to detect worms lacking
known signatures. This method should be accurate and robust
(i.e., it must quickly and accurately identify different propa-
gation characteristics of different worms), and work quickly
enough so that a worm can be detected at the inception of the
worm spread, before its propagation hits its exponential
growth rate.

SUMMARY OF THE INVENTION

In accordance with the principles of the present invention,
a new worm detection technique is presented that utilizes a
process to detect the outbreak of a new worm without know-
ing the signature of the worm. Changes in the traffic pattern of
unsolicited packets are detected, and any changes in traffic
patterns are analyzed to determine if they are consistent with
changes in traffic associated with worm propagation. More
specifically, traffic arrival patterns are monitored, primarily
for unsolicited traffic, i.e., traffic coming into a computer
network connection that was not first requested. Next,
changes in the traffic patterns are analyzed. During this analy-
sis, certain patterns of growth rates relating to the unsolicited
traffic that are indicative of the presence of worm propagation
are searched for, such as an exponential growth rate of unso-
licited traffic from numerous senders. When such a pattern is
detected, it is assumed that a worm is present so that measures
can be implemented to halt its progress.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a diagram illustrating a basic computer network.

FIG. 2 is a flow chart illustrating a method in accordance
with one particular embodiment of the invention.

FIG. 3 is a printout of a worm detection algorithm accord-
ing to one embodiment of the present invention.

FIG. 4 is a graph illustrating the effectiveness of the algo-
rithm of FIG. 3 in detecting the outbreak of the Slammer
Worm.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, a non-signature
based method for detecting Internet worms is presented. By
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monitoring and analyzing traffic patterns at a network con-
nection, a worm can be detected.

FIG. 1 illustrates a computer network 100. In this network,
clients 102, 104 and 106 connect to the server 115 through
router 110. Once connected to server 115, clients 102, 104
and 106 have access to Internet 120. Also connected to Inter-
net 120 through server 125 is client 130. Router 110 is
equipped with a firewall running security software intended
to monitor network traffic, specifically the packets sent and
received through the router, and identify and stop any mali-
cious traffic. Clients 102, 104, 106 and 130 are also running a
desktop security program for scanning individual packets
sent to the client.

Conventional security software identifies malicious pack-
ets based on the signature of the packet, or a unique identifier
for each packet. However, new worms are being designed
which can infect millions of hosts well before a signature can
be found. For example, client 130 is infected with a previ-
ously unidentified worm such that client 130 becomes a scan-
ner, meaning the worm sends out a scan, which is a series of
packets intended to poll a potential host computer. Client 130
scans clients 102, 104 and 106. Since the worm has no known
signature, neither the firewall nor the desktop security pro-
gram would recognize that the packets are malicious. If cli-
ents 102, 104 and 106 respond positively to the scan, client
130 passes the worm to clients 102, 104 and 106, and they
become new hosts.

FIG. 2 is a flow chart illustrating a worm detection method
in accordance with the principles of the present invention. In
Step 200, the unsolicited traffic being received at a specific
network location is identified and isolated. Unsolicited traffic
refers to network traffic that was not requested by a receiving
computer. For example, the traffic at router 110 from FIG. 1 is
monitored. This unsolicited traffic is isolated from the solic-
ited traffic, to produce a traffic trace based only on the unso-
licited packets received at the router.

The system now proceeds to step 205 where any changes in
traffic arrival patterns are determined. Though all changes in
traffic arrival patterns may not be due to worm propagation,
worm propagation usually results in traffic arrival pattern
changes with certain similar characteristics. As described in
further detail below, the system uses cumulative summing, or
CUSUM, a common statistical analysis tool used to detect
changes in data sets, to study the arrival rates to determine any
changes. CUSUM will detect a trend of increasing unsolicited
packet arrival rate.

The process continues to decision step 207, in which, if
CUSUM has detected a change in the arrival rates, the process
continues to step 210. If CUSUM has failed to detect a
change, flow returns to step 200.

If'a change is detected in Step 205, the system proceeds to
Step 210 where the changes are analyzed to determine if the
changes are related to worm propagation. Specifically, the
changes are analyzed to determine whether the changes have
some exponential growth patterns in arrival rates. A Maxi-
mum Likelihood Estimation (MLE) is used to produce a
non-stationary Poisson process and estimate its rate. Poisson
processes are commonly used in statistical analysis to exam-
ine the number of times an event happens during a given time
interval, where the probability for the event occurring is con-
stant with respect to time. An alarm will trigger when the
MLE yields a significant increase in propagation rate with a
high level of confidence.

Steps 205 and 210 are further explained herein below. In
step 205, first the inter-arrival times of the unsolicited packets
are determined. T, denotes the arrival time of the n-th unso-
licited packet in at-sample (a sample taken at most once every
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t seconds), and X,=T,-T,,_, is the inter-arrival time where
T,=0. It is assumed that the inter-arrival times {X,: 1=n<n,}
before the worm starts are independently and identically dis-
tributed with mean p, where T,,,, represents the time of the
first worm scan. After a worm arrives, the inter-arrival times
{X,,: n,,=n<oe} should have a decreasing mean that is less than
w. This shift in the distribution of inter-arrival times may be
considered a change point in statistical terms and CUSUM is
designed for detecting changes from one distribution to
another such as this change in inter-arrival times.

The CUSUM scheme can be applied as follows. Set S,=0
and define

S,=max(0,S,_+u-X,-pn=12,...

where p is dependant on the expected drop in mean inter-
arrival times due to a worm. Typically, pu is set to about half
the size of the drop in mean inter-arrival time that is crucial to
detect a change in arrival rates quickly. A change of inter-
arrival time is signaled whenever S, exceeds a certain thresh-
old h. The theory behind CUSUM is that, if the mean of X,
shifts from p to something smaller than p—pp at sample n,,
then S, will tend to accumulate positive increments after n,,
and thus eventually cross the threshold h and signal a change.
In practice, 1 is not known, as arrival times can vary due to
network conditions; but an estimate, such as an Exponentially
Weighted Moving Average (EWMA) can be used in its place.
The EWMA is based on the median of an initial sample of
inter-arrival times.

Choosing the threshold parameter, h, requires trading off
between detection delay (i.e., sensitivity) and the false detec-
tion rate. Small values of h provide quick detection when
changes are present but also give more false alarms. The
threshold h can be calculated from the expected time between
false alarms, known as the Average Run Length (ARL) in
quality control.

As seen in the flowchart, the CUSUM process used in step
205 is not used to directly trigger a worm alarm, but only as a
first stage toward worm detection. As previously noted, if the
CUSUM value Sn exceeds threshold h, the process proceeds
to step 210 in which the detected changes are analyzed and a
worm propagation model is estimated. However, if a new
worm outbreak is in progress, it is probable that some time has
elapsed between the outbreak and the CUSUM signal. When
step 205 detects an unusual increase in unsolicited network
traffic, there are three relevant cases that this increase might
indicate. Let T,, denote the most recent time (prior to the
current signal) when the CUSUM transitioned from a value of
0to a positive value. If a worm exists, its arrival is most likely
earlier than T, (hereinafter Case 1). However, it is possible
for a worm to arrive between T,,, and the CUSUM signaling
time (hereinafter Case 2). This happens rarely and the lag
between worm infection and the CUSUM signal transitioning
from Oto a positive value will most likely be small, e.g., on the
order of second. Of course, it is also possible that no worm
exists (hereinafter Case 3), which statistically is the most
likely case. Let us first focus on the statistical estimation of
the worm propagation model based on Case 1. It will be
shown below that this also includes Case 3 and also serves as
a good approximation for Case 2.

Scanner arrivals in a t-sample before a worm outbreak are
well-modeled as a Poisson process with rate b(t) that changes
slowly with time. Scanners that arise from a fresh worm
outbreak can be modeled as a non-stationary Poisson process
with rate:

MO=ae ™ (t=t,)
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where t,, is the time when the first worm scan arrives; a is the
expected number of worm scanner arrivals in the first second;
r is the exponential propagation rate; and I(x) is an indicator
function having value 1 when x is true and 0 otherwise. It is
assumed that any background scanners (non-malicious scan-
ners) and the ones caused by a new worm are independent.
The superposition of background and worm scanners is thus
modeled as a non-stationary Poisson process with rate:

MOy=b(D+ae"“I(t=t,).

Because the background traffic is approximately station-
ary, its rate b(t) can be estimated easily using local averaging.
Propagation characteristics are described by the parameters a
and r that depend on the efficiency of the worm and the size of
the network being monitored. Although a is not identifiable
(i.e., cannot be estimated statistically) when t,, is unknown,
the exponential rate r is identifiable. A worm alarm is trig-
gered when the data indicates with high confidence that r is
significantly higher than a small tolerable rate r,.

For simplicity, assume that the worm starts at 0 (i.e., t,,=0),
unsolicited scanners arrive at times T, T,, . . . according to a
Poisson process with rate A(t)=b+ae”, t=0, and the corre-
sponding CUSUM sequence S1, S2, . . . remains below the
threshold h until some arrival T,,, (n0=1) when the CUSUM
exceeds h and therefore causes flow to proceed to step 210 in
which the change is to be further analyzed.

With respect to step 210, let us define T~T,
2, ..
signaling time T ,,. Note that we can only observe T, . . .
and not the complete stream of arrivals T,, . . . T,,,
Toi041s - -+ 5 Losr Decause the worm outbreak time t,, =0 is not
generally known. Thus, any estimators of a and r must be
based on (T,, . . ., T), the distribution depends on the
unknowns n, and T,,,. The following theorem and its corol-
lary demonstrate that the r can be estimated from the T}, buta
cannot.

Theorem 1.

Let T,, T,, . . . denote consecutive arrival times from a
Poisson process with positive rate A(t)=b+ae” beginning at
t=0. Define T~T,, ~T,, for j=1, 2, . . . and for some ny=1.
Then, given T ,,=t,, the relative times T, T,, . . . are arrivals
from a Poisson process with rate A(t)=b+ae”, t=0, where
a=ae’(rt,).

Corollary 1.

Under the conditions of Theorem 1 and assuming that a>0,
the parameters a, b and r are identified by the data (T1, . .., Tn)
for n=3 but the parameter a is not identified unless t, is known.

The exception a=0 corresponds to no worm and in this case
the propagation rate r has no meaning. Fortunately, for the
purpose of worm detection, r is the most interesting parameter
and it can be estimated by maximum likelihood inference as
discussed next.

Let A()=f, M(s)ds. Then the normalized arrival times
A(T,), A(T,),.. . follow a stationary Poisson process with rate
1. Let In(r, a=log p(T,, . . ., T,IT,,i=t,) be the log-likelihood
function for the T,’s conditional on T, . By the density trans-
formation formula

“F n0+j_Tn0 fOrj:l s
., n, where T,, is the current arrival relative to the

, T

n

(@ = ) 1ogU(T ) = A(T,)

=1

= Zn: log(b + Eerrf) - {an + ?(eﬂ'" - 1)},
=1

the maximum likelihood estimates (MLE) are defined as

(R@)=arg max L, (na).
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6
Let 0=(r, 2)” and 0=(% 3)”. Denote 1n(8)=In(r, a). Then the
MLE 0 has positive properties as summarized in Theorem 2
below.
Theorem 2.

Under the conditions of Theorem 1, if 0 is bounded, then as

n%w,

6—0,
in probability and

Va6-0)—=N©,10)),

in distribution where 1(0) is the information matrix,

2

1
1) = limity o — E[

n 30907 l”(e)}’

and can be estimated consistently by

32

I'=-1 3aa07

1,(0).

The MLE f and its estimated asymptotic variance are used
repeatedly in the second stage to test whether r is significantly
positive. In particular, r>10 is tested against r=rQ, where r0
(say 0.0001) is the maximal rate that can be ignored. Let se(t)
be the asymptotic standard error of 1, that is,

se(F)=Y [i’l]u/n.

Since Z,,=(t-r,)/se(r) is asymptotically normally distributed
with mean 0 and variance 1 under the null hypothesis r=r,, the
second stage declares a worm outbreak when Z, >q,., where q,.
is a threshold such as the 99.99 percentile of the standard
Normal distribution. For example q.=3.8 is the 99.99% quan-
tile of the Normal distribution.

In most CUSUM monitoring applications, the CUSUM
statistic is reset to zero after a signal is triggered. In the
present algorithm, however, a large CUSUM is required for
the step 210 of FIG. 2 to operate. Hence, the CUSUM is not
reset immediately upon crossing the threshold h, rather the
reset occurs only after a substantial downward trend is seen
following the trigger. The algorithm identifies a downtrend if
the current CUSUM value is, for example, less than 80% of
the maximum value recorded since the previous reset.

Although scanner arrivals, for the most part, resemble a
locally stationary Poisson process, outliers do occasionally
occur in arrival traces. These are cases in which the inter-
arrival time between scanners is abnormally large for one
reason or another. These outliers never trigger a false alarm
because the MLE does not yield a large r in step 210. How-
ever, the outliers can easily lead to a CUSUM signal and thus
needlessly trigger the MLE computations.

To reduce the impact of outliers in creating such false
alarms, the algorithm may implement the following random
tail-draw technique. Let i, _, be the most recent exponentially
weighted moving average (EWMA) estimate of E(X,). If X,,
lies outside of the 0.01% and 99.99% percentiles of the expo-
nential(y,,_,) distribution, then it is replaced with a random
draw X, from the corresponding distribution for the purpose
of calculating S,,.

FIG. 3 shows an exemplary worm detection algorithm in
accordance with principles of the present invention. This
algorithm corresponds to steps 205-210 in FIG. 2. Line by
line, the algorithm proceeds as follows. Lines 1 and 2 initial-
ize the CUSUM and an EWMA estimate of the mean inter-
arrival time. Starting the EWMA based on the median of an
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initial sample provides robustness against outliers. Dividing
the median by log(2) produces an estimate of the mean. For
each new unsolicited scanner packet, Line 4 computes the
current CUSUM and Line 5 the current EWMA. No further
action is required if the CUSUM is zero. The EWMA param-
eter w determines the depth of the memory and the relative
weight between the current and previous data. Although there
is no general rule for the optimal choice of w, in our experi-
ments, performance of the algorithm is similar for various
values of w between 107 to 10~7. Whenever the CUSUM
becomes positive, lines 7 and 8 initialize indices used to
record the transition and track the local maximum: j is used to
track the number of consecutive positive CUSUM’s and S,,, .,
is the local maximum. If the CUSUM remains positive on
subsequent steps, then line 10 updates j and S, . and line 11
resets the CUSUM to zero if a downtrend is recognized with
respect to the local maximum. Line 12 triggers estimation of
the propagation rate in lines 13 and 14 if the CUSUM has
become large. Lines 15 through 17 test whether the data
suggest a significantly large propagation rate with high con-
fidence. If so, the alarm is raised until such time as the
CUSUM is reset to zero again.

A trace of the Slammer Worm outbreak was used to test the
algorithm. FIG. 4 plots the number of scanners arriving at the
firewall every second observed 1,000 seconds surrounding
the outbreak of Slammer. The first dashed vertical line 405
marks the time of arrival of the first Slammer scan and the
second dashed vertical line 410 marks when the worm detec-
tor of the present invention signals a worm outbreak. The
average number of unsolicited packets is about 2.5 per second
before the first worm scan arrives at time 364 seconds. The
alarm is raised at just 16 seconds after the initial Slammer
scan and at the time the scanners rate has increased to about
6.5 per second. Scans from Slammer peak at about 600 sec-
onds when almost all vulnerable hosts world-wide have
become infected. The algorithm was able to give a warning in
as little as 6.7% of the time it took for Slammer to infect all
hosts. In the trace, only 60 hosts had been affected before
Slammer would have been detected, whereas a total 072,516
were actually infected in total when the worm was left to
propagate naturally.

FIG. 4 is shown only as an example of the functionality of
the worm detection algorithm. It illustrates one embodiment
of'the present invention and is not intended to limit the present
invention in any matter.

It should be clear to persons familiar with the related arts
that the process, procedures and/or steps of the invention
described herein can be performed by a programmed com-
puting device running software designed to cause the com-
puting device to perform the processes, procedures and/or
steps described herein. These processes, procedures and/or
steps also could be performed by other forms of circuitry
including, but not limited to, application-specific integrated
circuits, logic circuits, and state machines.
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Having thus described a particular embodiment of the
invention, various alterations, modifications, and improve-
ments will readily occur to those skilled in the art. Such
alterations, modifications, and improvements as are made
obvious by this disclosure are intended to be part of this
description though not expressly stated herein, and are
intended to be within the spirit and scope of the invention.
Accordingly, the foregoing description is by way of example
only, and not limiting. The invention is limited only as defined
in the following claims and equivalents thereto.

We claim:

1. A method of detecting worm propagation, comprising:

using a processor for

identifying unsolicited traffic within traffic in a network;

isolating the unsolicited traffic;

determining an arrival rate of unsolicited traffic based on at

least

a cumulative summing value that indicates unsolicited traf-

fic arrival and

an exponentially weighted moving average estimate of the

arrival rate;

determining whether the cumulative summing value

exceeds a selected threshold;

determining a local maximum of the cumulative summing

value;
determining whether the cumulative summing value
decreases with respect to the local maximum; and

identifying worm propagation based on the cumulative
summing value increasing or remaining essentially the
same with respect to the local maximum for a plurality of
sequential cumulative summing values.

2. The method of claim 1, comprising resetting the cumu-
lative summing value to a preselected value based on a down-
trend in the cumulative summing value with respect to the
local maximum.

3. The method of claim 1, comprising

determining whether at least the cumulative summing

value indicates a large unsolicited traffic propagation
rate; and

initiating an alarm condition corresponding to worm

propagation.

4. The method of claim 1, comprising identifying worm
propagation based on an exponential growth rate in the unso-
licited traffic arrival rate.

5. The method of claim 1, wherein the network includes a
router and the unsolicited traffic is received at the router.

6. The method of claim 1, comprising identifying worm
propagation based on a decrease in an inter-arrival time
between unsolicited traffic packets.

7. The method of claim 6, wherein identifying worm propa-
gation is based on the inter-arrival time having a decreasing
mean over time.



